

What is the foundation?

- Definition 1: Foundation: The structure, that transmits the load of the building to the soil
- Definition 2: Load bearing soil (strata): The soil layer, that has the sufficient load bearing capacity in relation to the chosen foundation type
 - The primary design concerns are settlement (total settlement and differential settlement) and load bearing capacity.

What is the foundation?

What is the foundation?

- Choosing a kind of foundation depends on:
 - the ground conditions
 - the groundwater conditions
 - the site, the environment (the buildings nearby)
 - the structure of our building
- Requirements:
 - structural requirements: safe, be able to carry the load of the building
 - constructional requirements: schedule, minimal resources, minimal cost

What is the foundation?

- The specialities:
 - it is expensive and difficult to repair
 - usually it is constructed under the ground, so it is out of sight
 - an bad/ misapplied foundation could demolish the building
- The mistakes:
 - construction technology mistakes
 - bad or not proper info on soil (always necessary!!!)
 - planning mistakes: the type of foundation is inadequate for the ground layers / for the building

Spread (shallow) foundations

• strip foundation (wall footing)

(beam) grillage foundation

pad foundation

mat (slab) foundation

Transitional (semi-deep) foundations

Deep foundations

slurry wall

pile foundations

Spread (shallow) foundations

Spread (shallow) foundations

- When is it applicable?
 - The load-bearing layer is near to bottom floor level
 - The loads of the building are light-medium
- Types
 - Strip foundations
 - Pad foundations Bucket foundations
 - Beam foundations
 - Mat (slab) foundations

Strip foundations

Steel reinforcement is required when footing projects more than half of foundation wall thickness and becomes subject to bending.

Strip foundations

Materials

stone

brick

reinforced concrete

lightweight concrete

Strip foundations - construction

Strip foundations - construction

Prefabricated reinforced concrete

Strip foundations - construction

Pad foundations - construction

 Partly in-situ pad foundation and prefabricated pocket footing

Pad foundations - construction

Pad foundations - construction

Beam foundation - foundation grillage

Beam foundation - foundation grillage

Mat (slab) foundation

Design

Mat (slab) foundation

Design

Mat (slab) foundation - construction

Mat (slab) foundation - construction

Mat (slab) foundation - construction

Transitional (semi-deep) foundations

Well foundation – caisson, cofferdam

- Large, open-ended compartments – shell or box with cutting edge at the bottom
- Sunk into the ground by digging the soil out of the centre and loading the walls
- Filled with concrete (and compacted gravel)

Well foundation – caisson, cofferdam

- Cutting edge types
- Creating an underground station

Deep foundations

Deep foundations

- When is it necessary?
 - The load-bearing layer is in deeper location
 - The loads of the building are too heavy
 - Other special cases
- Types
 - Piles
 - Slurry wall
 - Other

Piles

- Material: wood, steel, concrete, reinforced concrete
- Geometry: length>5D, D>60 cm (large-diameter), D<30 cm (Micro-pile)
- Direction: vertical or leaning
- Construction:
 prefabricated or castin-place

Piles - construction

Prefabricated piles

- Hammered, grouted, vibrated, twisted
- (dynamic impacts)

Piles - construction

Cast-in-place piles

- Shell-type or shell-less type
- Many different technologies
- Constructing the foundation
- o. alignment
- 1. creating a test-pile
- 2. checking the load-bearing capacity (endurance test)
- 3. making the piles
- 4. removing the top of the piles
- 4. constructing the pile caps
- 5. connecting the pile caps with RC beams if necessary

CFA technology

- Drilling continuously until planned depth (using guiding tube if necessary)
- Placing the concrete and removing the drill
- Placing reinforcement (vibration)

(CFA= Continuous Flight Auger)

Piles - construction

CFA technology

Soil-Mec technology

- Boring until planned depth (using a guiding tube)
- Using bentonite mud (slurry) under the groundwater level
- Placing reinforcement
- Placing the concrete and removing the guiding tube

Piles - construction

Franki technology (bulb pile or compacted concrete pile)

- Filling concrete in a steel pipe (creating a plug)
- Pushing down the pipe using a heavy drop hammer
- Fastening the pipe and creating the foot
- Placing the concrete and compacting while removing the pipe (reinforcing)

Corrugated sides

Other technologies Compacted soil piles Micro-piles (using a drill, grouting with different pressures) Jet-grouting (creating) soil-concrete piles) 111. 111111, 1/// 1111111, 11 Pile-wall ٥ Ø đ G

Piles - construction

2

1)3

Concrete slurry walls

What is...?

- A deep, narrow trench filled with concrete (and reinforcement)
- Functions
- Retaining wall during excavation (can be watertight)
- Foundation
- Wall of the basement

Concrete slurry walls - construction

Creating panels (w:40-120 cm, l: 8-10 m)

- Creating the guiding walls
- Excavating the soil from the trench and piping in bentonite slurry (placing end pipes)
- Placing the reinforcement
- Placing concrete (by tremie method) displacing slurry (can be reused)
- (withdrawing end pipes)

Alternating building method

Concrete slurry walls - construction

What is bentonite slurry?

- A mixture of bentonite and water (a dense fluid)
- Produces a positive static pressure on the walls of the trench avoiding soil and water to enter the trench (supporting the surface of the soil)
- Piped in while excavating the trench, piped out while placing the concrete
- Can be reused after filtering (removing soil particles)

Concrete slurry walls - construction

Excavation

- Using clamshell buckets
- Hydrofraise technology

Alerabing story well pands under construction.

Concrete slurry walls - construction

Tie-back

- Anchorage to brace against earth and water pressure
- Steel and concrete ties

Concrete slurry walls - construction

Tie-backs

Tie-backs

Building next to existing constructions

Building next to existing constructions

Strengthening foundations

- The new construction means extra loads
- Cracks can appear on neighbouring buildings
- To avoid that the existing foundations have to be harmonised with the new ones
- Strenghtening existing foundations may be necessary

Building next to existing constructions

Harmonising foundation levels

- If the existing foundations would be deeper than the new ones: place the new foundation at the same level as the old ones
- If the existing foundations are higher: extra structures needed

Building next to existing constructions

Deepening the foundation level

- Placing strip foundation under the existing one
- Made of masonry or concrete
- Constructed in stages (0,8-1,5 m)

Building next to existing constructions

Deepening the foundation level

- Using prefabricated piles or micro-piles
- Pressed (hydraulic press) or drilled

Building next to existing constructions

Deepening the foundation level

- By grouting methods
- Jet grouting (soil-concrete piles)

Building next to existing constructions

Securing the neighbouring buildings with slurry walls or pilewalls

- Placing slurry walls or pile-walls straight next to the existing building so that the excavation and the loads of the new construction does affect the soil under the existing building
- Cracks can appear during building the slurry wall or pile walls

References

- http://cee.engr.ucdavis.edu/faculty/boulanger/
- <u>http://en.wikipedia.org/wiki/Foundation (engineering)</u>
- <u>http://www.foundationengineering.info/photo_galleries/ o8/footing_construction/</u>
- http://www.uwe.port.ac.uk/cracking/substructure/sectio n1.htm